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ABSTRACT 
 
     Two-dimensional simulations of dam-break flows 
using finite volume method and approximate Riemann 
solvers for computing the intercell fluxes have drawn 
growing attentions because of their robustness and 
abilities to handle mixed flows and discontinuities. Such 
models usually require complicated algorithms for 
treating source terms and second-order schemes for 
computing the intercell fluxes in order to gain 
numerically balanced solutions and accuracy, which 
often results in an excessively long computational time. 
With a view of developing an accurate and efficient 
model for real-life applications, this paper proposed a 
finite volume method, which uses the first-order HLL 
approximate Riemann solver for computing intercell 
fluxes and adopts the conservative form of the 
momentum equations with one source term representing 
the driving forces in each equation. Such treatment can 
easily eliminate numerical imbalance between source 
and flux terms without introducing complicated 
algorithms. The accuracy and improvement in 
computational efficiency of the newly developed model 
are demonstrated by means of a real-life test example.  
 
 

1. INTRODUCTION 
 
      The catastrophic failure of a dam often causes 
widespread downstream flooding, which may directly 
affect mobility, deployment, and safety of the army. A 
2D dam-break model can capture both spatial and 
temporal evolution of a potential dam-break flood event 
and provide sufficient details on the flood, such as flood 
depths, flow velocities, and timing of the flood arrival 
and recession at specific locations and times. Such pieces 
of information are crucial for military planning in the 
areas having potential dam-break risk.  
       
      Numerical solution of two-dimensional dam-break 
flows has been a great challenge to hydraulic engineers 
and researchers, because it often involves complex 
geometry, mixed flow regimes, and discontinuities. 
Among numerous approaches, the use of finite volume 

method with unstructured grid and approximate Riemann 
solvers for computing the intercell fluxes has gained 
increasing popularity, because of its highly adaptive 
ability to complex geometry, robustness, abilities to 
handle mixed flows and discontinuities, and outstanding 
mass conservation property (e.g., Zhao et al. 1996; 
Brufau and Garcia-Navarro 2000; Valiani et al. 2002; 
Yoon and Kang 2004). However, when source terms are 
presented due to uneven bathymetry, such methods may 
create numerical imbalance because of the artificial 
splitting of driving forces in the governing equations 
between flux and source terms, which are then evaluated 
using different methods. Such numerical imbalance can 
lead an unphysical flow even in a still water test case, as 
illustrated by Rogers et al (2003) through a two-
dimensional simulation of a circular water basin with 
uneven bathymetry. So far, many researchers have 
attempted to overcome these problems. For example, 
Nujic (1995) adopted the form of the governing equation 
in which the hydrostatic pressure force term is extracted 
from the flux. Such treatment makes it possible to 
discretize two source terms using the same method and 
thus to satisfy the numerical balance. Zhou et al. (2001) 
proposed the surface gradient method (SGM) for the 
treatment of the source terms. In the SGM, water depth 
at left and right of the interfaces is evaluated based on 
the linear reconstruction of water surface level. This 
method can eliminate numerical imbalance problem 
without introducing a complex algorithm for the source 
terms. Rogers et al (2003) used an algebraic approach in 
which the governing hyperbolic system of conservation 
laws is reformulated in terms of deviations away from an 
unforced but separately specified equilibrium state and 
the numerical balancing is achieved by incorporating the 
resulting extra physical information.  
 
      The use of complicated algorithms for treating source 
terms and the second-order schemes for computing the 
intercell fluxes often result in an excessively long 
computational time (e.g., Valiani et al. 2002; Yoon and 
Kang 2004). In the case of a large scale problem, the cost 
of computational time can be prohibitive. With a view of 
developing an accurate and efficient model for real-life 
applications, Ying et al (2006) proposed a finite volume 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 NOV 2006 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
A 2D Unstructured Dam-Break Model: Formulation And Validation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Center for Computational Hydroscience and Engineering, The
University of Mississippi University, Mississippi, 38677 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002075., The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 2

method, which uses the first-order HLL approximate 
Riemann solver for computing intercell fluxes and adopts 
the conservative form of the momentum equations with 
one source term representing the driving forces in each 
equation. Such treatment can easily eliminate numerical 
imbalance between source and flux terms without 
introducing complicated algorithms, and thus increase 
computational efficiency. Numerical tests have shown 
that this method is able to satisfactorily predict oblique 
hydraulic jump and partial dam-break flow (Ying et al. 
2006). In this paper, a real-life test example with 
complex geometry (Malpasset dam-break case) is used to 
further demonstrate the accuracy and improvement in 
computational efficiency of this newly proposed method.  
 
 

2.  GOVERNING EQUATIONS 
 
      The two-dimensional shallow water equations are 
obtained by integrating the Navier-Stokes equations over 
the flow depth based on several assumptions such as 
hydrostatic pressure distribution and small bottom slope. 
The equations in conservation and vector form are 
written as 
 

SGEU
=

∂
∂

+
∂
∂

+
∂
∂

yxt
                                                 (1) 

 
in which, U, E(U), G(U) and S(U) are respectively the 
vectors of conserved variables, fluxes in the x and y 
direction, and sources, defined as follows. 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
where h = water depth; u and v = velocity component in 
the x and y direction, respectively; g = gravitational 
acceleration; Z = water level; n = Manning’s coefficient. 
 
      For convenience, Eq. (1) is often rewritten as  
 
     SFU

=⋅∇+
∂
∂

t
                                                         (2) 

 
where ji

rr
  GEF +=  

      In the above form of the Saint Venant equations, the 
driving forces are represented by only one term with the 
water surface gradient, which makes it very nice for 
treating the source term because: (1) the variation of 
water surface is generally much smoother than water 
depth and bottom; (2) it eliminates numerical imbalance 
that arises due to using different methods to evaluate 
driving forces that are split between the flux and the 
source terms. As a matter of fact, Nujic (1995) proposed 
a balancing technique in which the pressure term due to 
water depth is extracted from the flux and combined into 
the bottom slope term, which actually resulted in the 
same form of the governing equation as Eq. (1). 
 
 

3.  NUMERICAL METHOD 

 
Fig. 1  Diagram for control volume definition 

   
      The governing equations are discretized according to 
the cell centered finite volume method on a triangular 
grid, as shown in Fig. 1. The conserved variables are 
defined at the cell centers and represent the average 
value over each cell, while the fluxes are calculated at 
the interfaces between cells.    
 
      Integrating Eq. (2) over the ith cell, one obtains  
 
      ∫ ∫∫
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  SFU                               (3) 

 
where iΩ = the area of the ith cell.  Applying Green’s 
theorem to the second term in Eq. (3) yields 
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where iΓ = boundary of the ith cell and n = the unit 
outward vector normal to the boundary. The second term 
in Eq. (4) can be approximated as 
 

       ∑∫
=Γ

∆Γ⋅=Γ⋅
3

1
  

j
ijijij

i

d nFnF                                      (5) 

 

iΩ  

j=1 

j=2 
j=3 

n 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

∂
∂

−

+
−

∂
∂

−=

3/1

222

3/1

222

0

h
vuvng

y
Zgh

h
vuung

x
ZghS

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

hvv
huv
hv

G
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

huv
huu
hu

E
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

hv
hu
h

U



 3

where the subscripts i and  j denote the ith cell and the jth 

edge of the cell, respectively; ∆Γ  = the length of an edge 
of a triangular cell.  
 
      Therefore, Eq. (4) can be written as 
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      According to Godunov (1959), the variables are 
approximated as constant states within each cell and then 
the fluxes at interfaces are calculated by solving resultant 
Riemann problems that exist at interfaces. In the present 
model, the HLL approximate Riemann solver, proposed 
by Harten, Lax and van Leer (Harten et al. 1983), is used 
to calculate the intercell flux, because of its robustness 
and ease to implement. According to the HLL Riemann 
solver, the intercell flux is given by  
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where UL and UR are conserved variables of the left and 
right states, respectively; and SL and SR are left and right 
traveling wave speeds, respectively, which are estimated 
according to the following equations (Fraccarollo and 
Toro 1995).   
 
     ( )**

LLL  ,min ghVghVS −−=                           (8) 

     ( )**
RRR  ,max ghVghVS ++=                          (9) 

 
where VL and VR are respectively the velocity 
components of the left and the right states in the unit 
vector n direction; Lh  and Rh  are water depth of the left 
and the right states, respectively. 
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      Note that for a dry bed problem the wave speeds SL 
and SR are estimated according to the following 
expressions. 
 

LLL ghVS −=  ,  LLR 2 ghVS +=   (for right dry bed) 
(12)                                  

RRL 2 ghVS −= , RRR ghVS +=   (for left dry bed)                           
                                 (13) 

      Water surface gradients in the source term are 
evaluated by 
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      It is easy to see that the resulting scheme does not 
cause numerically generated flow or numerical 
imbalance problem. Let us consider an open channel 
filled with water at rest. Obviously, the water will remain 
at rest if no disturbance is applied to the domain and 
boundaries. If we apply above scheme to simulate this 
case, we can see the source terms, including water 
surface gradient term and friction term, and flux terms in 
Eq. (4) are exactly equal to zero at initial time, no matter 
how bed elevation changes. As a result, the solutions of 
Z and Q at succeeding time will remain the same as 
initial state, in other words, no flow is numerically 
generated. 
 

 
Fig. 2  Topography and locations of measuring points for 

Malpasset dam-break case 
 
 

4. MODEL VALIDATIONS USING MALPASSET 
DAM-BREAK CASE 

 
4.1    Malpasset Dam-Break Event 
 
      The Malpasset dam was located in a narrow gorge of 
the Reyran river valley in France. It was a 66.5 m high 
arch dam with a crest length of 223 m and the maximum 
reservoir capacity of 55×106 m3. In the immediate 
downstream of the dam, the Reyran river valley is very 
narrow and has two consecutive sharp bends. Then the 
valley widens as it goes downstream and eventually 
reaches the flat plain (see Fig. 2). The dam failed in 1959 
following an exceptionally heavy rain. After the dam 
failure, a field survey was performed to obtain the 
maximum water levels along the Reyran river valley. In 
addition, a physical model with a scale of 1/400 was built 
to study the dam-break flow in 1964. The maximum 
water level and the flood wave arrival time at 9 points 
along the river valley were measured (see Fig.2). 
Because of its complex topography and availability of 
measured data, the Malpasset dam-break case was 
selected as a benchmark test example for dam-break 
models in the CADAM project (Goutal 1999). More 

 Reservoir Dam 
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detailed descriptions about the Malpasset dam-break test 
case can be found in literature (e.g. Goutal 1999, 
Hervouet 2000, and Valiani et al. 2002).   
 
4.2    Numerical Simulations 
 
     In the computations, two distinct triangular meshes 
were respectively used in order to investigate the impact 
of mesh size on the modeling results. Mesh A, as shown 
in Fig.3, is composed of 26000 cells and highly refined 
at the dam site, the immediately downstream valley, and 
along the downstream river, which allows the model 
accurately capture the details on flooding. Mesh B, as 
shown in Fig.4, is composed of 8835 cells and not 
excessively refined in order to increase computational 
efficiency. It should be noted that Mesh A was directly 
adopted from the CADAM project and Mesh B was 
generated by the commercial software SMS. The initial 
water level in the reservoir was set to be 100 m above 
sea level. The rest of the computational domain was 
considered as dry bed. The previous study has shown 
that the initial downstream river flow is negligible 
because of its relatively small flow rate comparing to the 
flow caused by the dam failure (Hervouet 2000). The 
Manning’s coefficient was set to be 0.025 m-1/3s over the 
entire computational domain. The time interval ∆t = 
0.025 s for Mesh A and ∆t = 0.06 s for Mesh B. The 
calculations with a final time t = 3000s require 1 hour 5 
minutes for the Mesh A and 7.6 minutes for the Mesh B 
on a PC with AMD 2.4 GHz CPU.  
 
4.3    Result and Analysis 
 

Figs.5 and 6 show the flooded area and water depth, 
calculated using Mesh A and Mesh B, respectively. It is 
observed that the overall flooded area and water depth 
obtained from Mesh A and Mesh B are very similar, 
despite some tiny and local differences in flooded area 
and water depth. It is not surprising there are such 
differences, because Mesh B is much coarser than Mesh 
A so that some fine topographic details such as 
downstream river are not well represented in the 
simulation using Mesh B.  

 
Figs. 7 and 8 compare the computed maximum water 

level and wave front arrival time with the measured data. 
In these figures, good agreements between Mesh A’s and 
Mesh B’s results are observed again. Fig. 7 also shows 
that the results of maximum water level from the present 
model are very close to those from the model developed 
by Valiani et al. (2002), in which the high order schemes 
were used for both estimating intercell fluxes and time 
advancing. It is important to note that their calculation on 
a quadrangular mesh with 10696 cells requires 26 hours 
on a PC with Pentium III 700 MHz CPU, whereas the 
present model using Mesh A (26000 cells) only requires 
4 hours 11 minutes of computational time on a PC with 

similar performance (Pentium III 850 MHz CPU). This 
indicates that the present model can substantially 
increase computational efficiency, while accuracy is 
preserved.  

 
 

5.  CONCLUSIONS 
 

      A two-dimensional dam-break model has been 
developed based on finite volume method using 
unstructured grids. The intercell fluxes are evaluated 
based on the HLL approximate Riemann solver. The 
momentum equation used in the model has only one 
source term representing the driving forces. This 
approach can successfully eliminate the numerical 
imbalance between source and flux terms. The model is 
validated against laboratory data from a real-life dam-
break case. The results show that the simulations using 
either Mesh A or Mesh B are capable of correctly 
capturing major hydrodynamic behaviors of the flood 
event, such as maximum water level and wave front 
arrival time. The comparison of computational times 
with other models further demonstrates that the present 
model is more efficient than conventional unstructured 
models using high-order schemes for estimating fluxes 
and complicated upwind algorithms for treatment of 
source term. Such an unstructured model allows using 
arbitrary computational domain and meshes with local 
refinement. This provides the more efficient way to 
obtain local fine details on flooding than structured 
models.  
 
      To sum up, the proposed model is able to correctly 
capture both spatial and temporal evolution of a potential 
dam-break flood event and provide crucial information 
for military planning in the areas having potential dam-
break risk.  
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Fig. 3  Mesh A used for simulation 
 

 

 
 

Fig. 4  Mesh B used for simulation 
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(a) t = 800 s 
 
 

 
 

(b) t = 1800 s 
 
 

Fig. 5  Water depth computed using Mesh A 
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Fig. 7  Comparison of computed maximum water level 

with measured data from physical model 
 
 
 
 
 
 
 

 
 

(a) t = 800 s 
 
 

 
 

(b) t = 1800 s 
 
 

Fig. 6  Water depth computed using Mesh B 
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Fig. 8  Comparison of computed wave front arrival time 

with measured data from physical model 
 
 
 
  


